Urban M, Forkel M, Eberle J, Huettich C, Schmullius C, Herold M. Pan-arctic climate and land cover trends derived from multi-variate and multi-scale analyses (1981-2012). Remote Sensing. 2014;6:2296–316.
Article
Google Scholar
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Levesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change. 2015; doi:10.1038/nclimate2697.
Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett. 2011;6:045509.
Cahoon SMP, Sullivan PF, Shaver GR, Welker JM, Post E. Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets. Ecol Lett. 2012;15:1415–22.
Article
PubMed
Google Scholar
Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cy. 2009;23, GB2023.
Article
Google Scholar
Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL,Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O'Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J, Kuhry P. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences. 2014;11:6573–93.
Schuur EAG, Mcguire AD, Schädel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE. Climate change and the permafrost carbon feedback. Nature. 2015;520:171–9.
McGuire AD, Anderson LG, Christensen TR, Dallimore S, Guo L, Hayes DJ, Heimann M, Lorenson TD, Macdonald RW, Roulet N. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol Monogr. 2009;79:523–55.
Hollesen J, Elberling B, Jansson PE. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland. Global Change Biol. 2011;17:911–26.
Article
Google Scholar
Schaefer K, Zhang T, Bruhwiler L, Barrett AP. Amount and timing of permafrost carbon release in response to climate warming. Tellus B. 2011;63:165–80.
Article
CAS
Google Scholar
Creamer CA, Filley TR, Boutton TW, Oleynik S, Kantola IB. Controls on soil carbon accumulation during woody plant encroachment: Evidence from physical fractionation, soil respiration, and delta-13C of respired CO2. Soil Biol Biochem. 2011;43:1678–87.
Article
CAS
Google Scholar
Ostle NJ, Smith P, Fisher R, Woodward FI, Fisher JB, Smith JU, Galbraith D, Levy P, Meir P, McNamara NP, Bardgett RD. Integrating plant-soil interactions into global carbon cycle models. J Ecology. 2009;97:851–63.
Hollingsworth TN, Schuur EAG, Chapin III FS, Walker MD. Plant community composition as a predictor of regional soil carbon storage in Alaskan Boreal Black Spruce Ecosystems. Ecosystems. 2008;11:629–42.
Article
CAS
Google Scholar
Hooper D, Vitousek P. The effects of plant composition and diversity on ecosystem processes. Science. 1997;277:1302–5.
Article
CAS
Google Scholar
Chapin F, Bret-Harte M, Hobbie S. Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci. 1996;7:347–58.
Article
Google Scholar
Haddix ML, Plante AF, Conant RT, Six J, Steinweg JM, Magrini-Bair K, Drijber RA, Morris SJ, Paul EA. The role of soil characteristics on temperature sensitivity of soil organic matter. Soil Sci Soc Am J. 2011;75:56–68.
Thomsen IK, Petersen BM, Bruun S, Jensen LS, Christensen BT. Estimating soil C loss potentials from the C to N ratio. Soil Biol Biochem. 2008;40:849–52.
Article
CAS
Google Scholar
Hobbie S. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr. 1996;66:503–22.
Article
Google Scholar
Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol App. 2000;10:423–36.
Article
Google Scholar
Shaver GR, Billings WD. Root Production and Root Turnover in a Wet Tundra Ecosystem, Barrow, Alaska. Ecology. 1975;56:401–9.
Article
Google Scholar
Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–80.
Article
CAS
PubMed
Google Scholar
Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 2000;32:1485–98.
Article
CAS
Google Scholar
Hudson JMG, Henry GHR, Cornwell WK. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biol. 2011;17:1013–21.
Article
Google Scholar
Bosatta E, Ågren G. Soil organic matter quality interpreted thermodynamically. Soil Biol Biochem. 1999;31:1889–91.
Article
CAS
Google Scholar
von Lützow M, Kögel-Knabner I. Temperature sensitivity of soil organic matter decomposition—what do we know? Biol Fertil Soils. 2009;46:1–15.
Article
Google Scholar
Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. Global Change Biol. 2011;17:3392–404.
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.
Article
CAS
PubMed
Google Scholar
Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nature Climate Change. 2014. doi:10.1038/nclimate2438.
Google Scholar
Hinzman LD, Deal CJ, McGuire AD, Mernild SH, Polyakov IV, Walsh JE. Trajectory of the Arctic as an integrated system. Ecological Applications. 2013;23:1837–68.
Article
PubMed
Google Scholar
Horwath JL, Sletten RS, Hagedorn B, Hallet B. Spatial and temporal distribution of soil organic carbon in nonsorted striped patterned ground of the High Arctic. J Geophys Res-Biogeo. 2008;113:G03S07.
Article
Google Scholar
Rumpel C, Koegel-Knabner I. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil. 2011;338:143–58.
Article
CAS
Google Scholar
Hugelius G, Kuhry P. Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Global Biogeochemical Cycles. 2009;23, GB3006.
Article
Google Scholar
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biol. 2012;18:1781–96.
Article
Google Scholar
Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, Lützow von M. An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutrition and Soil Sci. 2008;171:5–13.
Petrenko CL, Bradley-Cook J, Lacroix E, Friedland AJ, Virginia RA. Mineral soil carbon and nitrogen storage in graminoid- and shrub-domintated soils of western Greenland. Arctic Science. In review.
Sierra CA, Trumbore SE, Davidson EA, Vicca S, Janssens I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J Adv Model Earth Syst. 2015;7:335–56.
Article
Google Scholar
Stendel M, Christensen JH, Aoalgeirsdottir G, Kliem N, Drews M. Regional climate change for Greenland and surrounding seas. Danish Meteorological Institute. 2007. http://978-87-7478-547-7. Accessed 15 Mar 2015
Anderson DR. Information Theory and Entropy. Model Based Inference in the Life Sciences: A Primer on Evidence. New York: Springer; 2008. p. 51–82.
Book
Google Scholar
Schädel C, Schuur EAG, Bracho R, Elberling B, Knoblauch C, Lee H, Luo Y, Shaver GR, Turetsky MR. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biol. 2014;20:641–52.
Treat CC, Wollheim WM, Varner RK, Grandy AS, Talbot J, Frolking S. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Global Change Biol. 2014;20:2674–86.
Article
CAS
Google Scholar
Lee H, Schuur EA, Inglett KS, Lavoie M, Chanton JP. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biol. 2012;18:515–27.
Article
Google Scholar
Hobbie S, Nadelhoffer K. A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil. 2002;242:163–70.
Article
CAS
Google Scholar
Mikan C, Schimel J, Doyle A. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem. 2002;34:1785–95.
Article
CAS
Google Scholar
Elberling B, Jakobsen BH, Berg P, Søndergaard J, Sigsgaard C. Influence of vegetation, temperature, and water content on soil carbon distribution and mineralization in four high arctic soils. Arct Antarct Alp Res. 2004;36:528–38.
Article
Google Scholar
Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.
Article
CAS
Google Scholar
Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biol. 2010;16:1296–305.
Article
Google Scholar
Yi S, Woo M, Arain MA. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys Res Lett. 2007;34, L16504.
Article
Google Scholar
Sturm M, Holmgren J, McFadden J. Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. J Climate. 2001;14:336–44.
Article
Google Scholar
Sistla SA, Asao S, Schimel JP. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol Biochem. 2012;55:78–84.
Article
CAS
Google Scholar
Giblin A, Nadelhoffer KJ, Shaver G, Laundre JA, McKerrow AJ. Biogeochemical diversity along a riverside Toposequence in Arctic Alaska. Ecol Monogr. 1991;61:415.
Article
Google Scholar
Weintraub MN, Schimel JP. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems. 2003;6:129–43.
Article
CAS
Google Scholar
Post E, Pedersen C. Opposing plant community responses to warming with and without herbivores. P Natl Acad Sciences. 2008;105:12353–8.
Article
CAS
Google Scholar
Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS. Modeling soil CO2 emissions from ecosystems. Biogeochemistry. 2005;73:71–91.
Article
Google Scholar
Kirschbaum M. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995.
Hobbie S, Miley T, Weiss M. Carbon and nitrogen cycling in soils from acidic and nonacidic tundra with different glacial histories in Northern Alaska. Ecosystems. 2002;5:761–74.
Article
CAS
Google Scholar
Karhu K, Fritze H, Tuomi M, Vanhala P, Spetz P, Kitunen V, Liski J. Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles. Soil Biol Biochem. 2010;42:72–82.
Article
CAS
Google Scholar
Elberling B. Seasonal trends of soil CO2 dynamics in a soil subject to freezing. J Hydrology. 2003.
Atkin O. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Sci. 2003;8:343–51.
Article
CAS
Google Scholar
Bradford MA, Watts BW, Davies CA. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Global Change Biol. 2010;16:1576–88.
Article
Google Scholar
Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global Change Biol. 2014;20:3578–86.
Article
Google Scholar
Howard DM, Howard P. Relationships between CO2 evolution, moisture content and temperature for a range of soil types. Soil Biol Biochem. 1993;25:1537–46.
Article
Google Scholar
Lomander A, Kätterer T, Andrén O. Carbon dioxide evolution from top- and subsoil as affected by moisture and constant and fluctuating temperature. Soil Biol Biochem. 1998;30:2017–22.
Article
CAS
Google Scholar
Lellei-Kovács E, Kovács-Láng E, Botta-Dukát Z, Kalapos T, Emmett B, Beier C. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration. European J Soil Biol. 2011;47:247–55.
Article
Google Scholar
Natali SM, Schuur E, Mauritz M. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res-Biogeo. 2015;120:525–37.
Article
CAS
Google Scholar
Briones MJI, McNamara NP, Poskitt J, Crow SE, Ostle NJ. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Global Change Biol. 2014;20:2971–82.
Article
Google Scholar
Nobrega S, Grogan P. Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in birch hummock tundra. Ecosystems. 2007;10:419–31.
Article
CAS
Google Scholar
Illeris L, Christensen TR, Mastepanov M. Moisture Effects on Temperature Sensitivity of CO2 Exchange in a Subarctic Heath Ecosystem. Biogeochemistry. 2004;70:315–30.
Article
CAS
Google Scholar
Sullivan PF, Welker JM, Steltzer H, Sletten RS, Hagedorn B, Arens SJT, Horwath JL. Energy and water additions give rise to simple responses in plant canopy and soil microclimates of a high arctic ecosystem. J Geophys Res-Biogeo. 2008;113:G03S08.
Google Scholar
NOAA. Sondre Stromfjord. ftp://ftp.atdd.noaa.gov/pub/GCOS/WMO-Normals/TABLES/REG_VI/GL/04231.TXT. Accessed 24 Jun 2015.
Mernild SH, Hanna E, McConnell JR, Sigl M, Beckerman AP, Yde JC, Cappelen J, Malmros JK, Steffen K. Greenland precipitation trends in a long-term instrumental climate context (1890-2012): evaluation of coastal and ice core records. Int J Climatol. 2014;35:303–20.
Article
Google Scholar
Levy LB, Kelly MA, Howley JA, Virginia RA. Age of the Orkendalen moraines, Kangerlussuaq, Greenland: constraints on the extent of the southwestern margin of the Greenland Ice Sheet during the Holocene. Quaternary Science Rev. 2012;52:1–5.
Article
Google Scholar
Post E, Forchhammer MC. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos T R Soc B. 2008;363:2367–73.
Article
Google Scholar
Jones A, Stolbovoy V, Tarnocai C, Broll G, Spaargaren O, Montarella L, editors. In: Soil Atlas of the Northern Circumpolar Region. Luxembourg: European Commission, Office for Official Publications of the European Communities; 2009
Heindel RC, Chipman JW, Virginia RA. The Spatial Distribution and Ecological Impacts of Aeolian Soil Erosion in Kangerlussuaq, West Greenland. Ann Assoc Am Geographers. 2015;105:875–90.
Article
Google Scholar
Sullivan PF, Arens SJT, Chimner RA, Welker JM. Temperature and microtopography interact to control carbon cycling in a high arctic fen. Ecosystems. 2008;11:61–76.
Article
CAS
Google Scholar
Petrenko CL, Friedland AJ: Mineral Soil Carbon Pool Responses to Forest Clearing in Northeastern Hardwood Forests. GCB Bioenergy 2014; doi:10.1111/gcbb.12221
Sollins P, Glassman C, Paul EA, Swanston C, Lajtha K, Heil JW. C and N Dry Combustion. In: Robertson GP, Coleman DC, Bledsoe C, Sollins P, editors. Standard Soil Methods for Long-Term Ecological Research. New York: Oxford; 1999. p. 92–95
Curiel Yuste J, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Global Change Biol. 2007;13:2018–35.
Article
Google Scholar
Bradley-Cook J, Virginia RA: Soil carbon storage, respiration potential, and quality across an age and climate gradient, western Greenland. Polar Biol. 2016; doi:10.1007/s00300-015-1853-2
Leifeld J, Fuhrer J. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality. Biogeochemistry. 2005;75:433–53.
Article
CAS
Google Scholar
Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York: Springer; 2002.
Google Scholar
Mozerolle MJ. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(C), 2nd ed. R package; 2015. http://CRAN.R-project.org/package=AICcmodavg
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evolutionary Biol. 2011;24:699–711.
Article
CAS
Google Scholar
Team RC. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
Wickham H. The Split-Apply-Combine Strategy for Data Analysis. J Statistical Software. http://www.jstatsoft.org/v40/i01/. 2011;40:1–29.
Wickham H. Reshaping data with the reshape package. Journal of Statistical Software. http://www.jstatsoft.org/v21/i12/paper. 2007;21.
Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar