Kearney M, Porter W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett. 2009;12:334–50.
Article
PubMed
Google Scholar
Buckley LB, Kingsolver JG. Functional and phylogenetic approaches to forecasting species’ responses to climate change. Annu Rev Ecol Evol Syst. 2012;43:205–26.
Article
Google Scholar
Chown SL. Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc Lond B Biol Sci. 2012;367:1615–27.
Article
PubMed
PubMed Central
Google Scholar
Seebacher F, Franklin CE. Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc Lond B Biol Sci. 2012;367:1607–14.
Article
PubMed
PubMed Central
Google Scholar
Urban MC, Bocedi G, Hendry AP, Mihoub J-B, Pe’er G, Singer A, Bridle JR, Crozier LG, De Meester L, Godsoe W, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353.
Fuller A, Dawson T, Helmuth B, Hetem Robyn S, Mitchell D, Maloney Shane K. Physiological mechanisms in coping with climate change. Physiol Biochem Zool. 2010;83:713–20.
Article
PubMed
Google Scholar
Angilletta Jr MJ, Cooper BS, Schuler MS, Boyles JG. The evolution of thermal physiology in endotherms. Front Biosci. 2010;2:861–81.
Google Scholar
Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc Lond B Biol Sci. 2012;367:1665–79.
Article
PubMed
PubMed Central
Google Scholar
Buckley LB, Hurlbert AH, Jetz W. Broad‐scale ecological implications of ectothermy and endothermy in changing environments. Glob Ecol Biogeogr. 2012;21:873–85.
Article
Google Scholar
Boyles JG, Thompson AB, McKechnie AE, Malan E, Humphries MM, Careau V. A global heterothermic continuum in mammals. Glob Ecol Biogeogr. 2013;22:1029–39.
Article
Google Scholar
Boyles JG, Seebacher F, Smit B, McKechnie AE. Adaptive thermoregulation in endotherms may alter responses to climate change. Integr Comp Biol. 2011;51:676–90.
Article
PubMed
Google Scholar
McCain CM, King SRB. Body size and activity times mediate mammalian responses to climate change. Glob Chang Biol. 2014;20:1760–9.
Article
PubMed
Google Scholar
Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B. 2015;85:709–27.
Article
CAS
Google Scholar
Tattersall GJ, Leite CA, Sanders CE, Cadena V, Andrade DV, Abe AS, Milsom WK. Seasonal reproductive endothermy in tegu lizards. Sci Adv. 2016;2:e1500951.
Article
PubMed
PubMed Central
Google Scholar
Angilletta MJ. Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford: Oxford University Press; 2009.
Book
Google Scholar
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with thermal challenges: Physiological adaptations to environmental temperatures. Compr Physiol. 2012;2:2151–202.
PubMed
Google Scholar
Bartholomew GA. Body temperature and energy metabolism. In: Gordon MS, Bartholomew GA, Grinnell AD, Jorgensen CB, White FN, editors. Animal Physiology: Principles and Adaptations. Secondth ed. New York: Macmillan Publishing Co., Inc; 1972. p. 298–368.
Google Scholar
Scholander PF, Hock R, Walters V, Irving L. Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull. 1950;99:259–71.
Article
CAS
PubMed
Google Scholar
Porter WP, Gates DM. Thermodynamic equilibria of animals with environment. Ecol Monogr. 1969;39:227–44.
Article
Google Scholar
Porter WP, Kearney M. Size, shape, and the thermal niche of endotherms. Proc Natl Acad Sci U S A. 2009;106:19666–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphries MM, Umbanhowar J. Filtering environmental variability: Activity optimization, thermal refuges, and the energetic responses of endotherms to temperature. In: Vasseur DA, McCann KS, editors. The Impact of Environmental Variability on Ecological Systems, vol. 2. Netherlands: Springer; 2007. p. 61–87.
Chapter
Google Scholar
Porter W, Ostrowski S, Williams J. Modeling animal landscapes. Physiol Biochem Zool. 2010;83:705–12.
Article
CAS
PubMed
Google Scholar
Glanville EJ, Seebacher F. Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes). Comp Biochem Physiol A. 2010;155:383–91.
Article
CAS
Google Scholar
Shrestha AK, Wieren SE, Langevelde F, Fuller A, Hetem RS, Meyer L, Bie S, Prins HHT. Larger antelopes are sensitive to heat stress throughout all seasons but smaller antelopes only during summer in an African semi-arid environment. Int J Biometeorol. 2013. doi:10.1007/s00484-012-0622-y.
Google Scholar
Hetem RS, Maloney SK, Fuller A, Mitchell D. Heterothermy in large mammals: inevitable or implemented? Biol Rev. 2016;91:187–205.
Article
PubMed
Google Scholar
Signer C, Ruf T, Arnold W. Hypometabolism and basking: the strategies of Alpine ibex to endure harsh over-wintering conditions. Funct Ecol. 2011;25:537–47.
Article
Google Scholar
Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K, Schober F. Nocturnal hypometabolism as an overwintering strategy of red deer (Cervus elaphus). Am J Physiol Regul Integr Comp Physiol. 2004;286:R174–81.
Article
CAS
PubMed
Google Scholar
Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol. 2004;141:317–29.
Article
PubMed
Google Scholar
Ruf T, Geiser F. Daily torpor and hibernation in birds and mammals. Biol Rev. 2015;90:891–926.
Article
PubMed
Google Scholar
Staples JF. Metabolic flexibility: hibernation, torpor, and estivation. Compr Physiol. 2016;6:737–71.
Article
PubMed
Google Scholar
Nagy KA. Seasonal water, energy and food use by free-living, arid-habitat mammals. Aust J Zool. 1994;42:55–63.
Article
Google Scholar
Tieleman BI, Williams JB. The role of hyperthermia in the water economy of desert birds. Physiol Biochem Zool. 1999;72:87–100.
Article
CAS
PubMed
Google Scholar
Degen AA. Ecophysiology of small desert mammals. Berlin: Springer; 1997.
Book
Google Scholar
Schmidt-Nielsen K, Schmidt-Nielsen B, Jarnum S, Houpt T. Body temperatures of the camel and its relation to water economy. Am J Physiol. 1956;188:103–12.
Google Scholar
McKechnie AE, Wolf BO. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett. 2010;6:253–6.
Article
PubMed
Google Scholar
Lovegrove BG. The evolution of endothermy in Cenozoic mammals: a plesiomorphic-apomorphic continuum. Biol Rev. 2012;87:128–62.
Article
PubMed
Google Scholar
Humphries MM, Boutin S, Thomas DW, Ryan JD, Selman C, McAdam AG, Berteaux D, Speakman JR. Expenditure freeze: the metabolic response of small mammals to cold environments. Ecol Lett. 2005;8:1326–33.
Article
Google Scholar
Humphries MM, Careau V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol. 2011;51:419–31.
Article
PubMed
Google Scholar
Aschoff J, Pohl H. Rhythmic variations in energy metabolism. Fed Proc. 1969;29:1541–52.
Google Scholar
Lovegrove BG. A phenology of the evolution of endothermy in birds and mammals. Biol Rev Camb Philos Soc. 2016. doi:10.1111/brv.12280.
PubMed
Google Scholar
Schleucher E, Prinzinger R. Heterothermia and torpor in birds: highly specialized physiologcial ability or just deep “nocturnal hypothermia”? — The limitations of terminology. Acta Zool Sin. 2006;52(Supplement):393–6.
Google Scholar
Moyer‐Horner L, Mathewson PD, Jones GM, Kearney MR, Porter WP. Modeling behavioral thermoregulation in a climate change sentinel. Ecol Evol. 2015;5:5810–22.
Article
PubMed
PubMed Central
Google Scholar
Rey B, Halsey LG, Hetem RS, Fuller A, Mitchell D, Rouanet J-L. Estimating resting metabolic rate by biologging core and subcutaneous temperature in a mammal. Comp Biochem Physiol Part A Mol Integr Physiol. 2015;183:72–7.
Article
CAS
Google Scholar
Taylor CR, Johansen K, Bolis L, Aschoff J. The circadian rhythm of body temperature as a function of body size. In: A Companion to Animal Physiology. Cambridge: Cambridge University Press; 1982. p. 173–88.
Google Scholar
Refinetti R, Menaker M. The circadian-rhythm of body temperature. Physiol Behav. 1992;51:613–37.
Article
CAS
PubMed
Google Scholar
Clarke A, Rothery P. Scaling of body temperature in mammals and birds. Funct Ecol. 2008;22:58–67.
Google Scholar
Robinson KW. Heat tolerances of Australian monotremes and marsupials. Aust J Biol Sci. 1954;7:348–60.
Article
CAS
PubMed
Google Scholar
Morrison PR, Ryser FA. Weight and body temperature in mammals. Science. 1952;116:231–2.
Article
CAS
PubMed
Google Scholar
Refinetti R. Body temperature and behaviour of golden hamsters (Mesocricetus auratus) and ground squirrels (Spermophilus tridecemlineatus) in a thermal gradient. J Comp Physiol A. 1995;177:701–5.
Article
CAS
PubMed
Google Scholar
Nowack J, Rojas AD, Körtner G, Geiser F. Snoozing through the storm: torpor use during a natural disaster. Sci Rep. 2015;5:11243.
Article
PubMed
PubMed Central
Google Scholar
Stawski C, Körtner G, Nowack J, Geiser F. The importance of mammalian torpor for survival in a post-fire landscape. Biol Lett. 2015;11:20150134.
Article
PubMed
PubMed Central
CAS
Google Scholar
Canale CI, Levesque DL, Lovegrove BG. Tropical heterothermy: Does the exception prove the rule or force a re-definition? In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Heidelberg: Springer Berlin; 2012. p. 29–40.
Chapter
Google Scholar
Grigg GC, Beard LA, Augee ML. The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool. 2004;77:982–97.
Article
PubMed
Google Scholar
Brice PH. Thermoregulation in monotremes: riddles in a mosaic. Aust J Zool. 2009;57:255–63.
Article
Google Scholar
Levesque DL, Lobban KD, Lovegrove BG. Effects of reproductive status and high ambient temperatures on the body temperature of a free-ranging basoendotherm. J Comp Physiol B. 2014;184:1041–53.
Article
PubMed
Google Scholar
Oelkrug R, Goetze N, Exner C, Lee Y, Ganjam GK, Kutschke M, Müller S, Stöhr S, Tschöp MH, Crichton PG, et al. Brown fat in a protoendothermic mammal fuels eutherian evolution. Nat Commun. 2013;4:e2140.
Article
CAS
Google Scholar
White CR, Kearney MR. Determinants of inter-specific variation in basal metabolic rate. J Comp Physiol B. 2013;183:1–26.
Article
CAS
PubMed
Google Scholar
Clarke A, Rothery P, Isaac NJB. Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol. 2010;79:610–9.
Article
PubMed
Google Scholar
Lovegrove BG. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B. 2003;173:87–112.
CAS
PubMed
Google Scholar
Gerkema MP, Davies WIL, Foster RG, Menaker M, Hut RA. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc R Soc B. 2013;280:20130508.
Article
PubMed
PubMed Central
Google Scholar
Crompton AW, Taylor CR, Jagger JA. Evolution of homeothermy in mammals. Nature. 1978;272:333–6.
Article
CAS
PubMed
Google Scholar
van der Vinne V, Gorter JA, Riede SJ, Hut RA. Diurnality as an energy-saving strategy: energetic consequences of temporal niche switching in small mammals. J Exp Biol. 2015;218:2585–93.
Article
PubMed
Google Scholar
Levesque DL, Lovegrove BG. Increased homeothermy during reproduction in a basal placental mammal. J Exp Biol. 2014;217:1535–42.
Article
PubMed
Google Scholar
Lovegrove BG, Canale CI, Levesque DL, Fluch G, Řeháková-Petrů M, Ruf T. Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change? Physiol Biochem Zool. 2014;87:30–45.
Article
PubMed
Google Scholar
Malan A. The origins of hibernation: a reappraisal. In: Geiser F, Hulbert A, Nicol S, editors. Adaptations to the Cold. Armidale: University of New England Press; 1996. p. 1–6.
Google Scholar
Aschoff J. Circadian control of body temperature. J Therm Biol. 1983;8:143–7.
Article
Google Scholar
Lovegrove BG, Heldmaier G, Ruf T. Perspectives of endothermy revisited - The endothermic temperature-range. J Therm Biol. 1991;16:185–97.
Article
Google Scholar
Aschoff J. Thermal conductance in mammals and birds: Its dependence on body size and circadian phase. Comp Biochem Physiol Part A Mol Integr Physiol. 1981;69:611–9.
Article
Google Scholar
McNab BK. On the utility of uniformity in the definition of basal rate of metabolism. Physiol Zool. 1997;70:718–20.
Article
CAS
PubMed
Google Scholar
Lovegrove BG, Smith GA. Is “nocturnal hypothermia” a valid physiological concept in small birds?: a study on Bronze Mannikins (Spermestes cuccullatus). Ibis. 2003;145:547–57.
Article
Google Scholar
McKechnie AE, Lovegrove BG. Avian facultative hypothermic responses: a review. Condor. 2002;104:705–24.
Article
Google Scholar
Canale CI, Henry PY. Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clin Res. 2010;43:135–47.
Google Scholar
van der Vinne V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M, Daan S, Pilorz V, Hut RA. Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl Acad Sci U S A. 2014;111:15256–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kronfeld-Schor N, Dayan T. Activity patterns of rodents: the physiological ecology of biological rhythms. Biol Rhythm Res. 2008;39:193–211.
Article
Google Scholar
Hut RA, Pilorz V, Boerema AS, Strijkstra AM, Daan S. Working for food shifts nocturnal mouse activity into the day. PLoS One. 2011;6:e17527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bondarenco A, Körtner G, Geiser F. Hot bats: extreme thermal tolerance in a desert heat wave. Naturwissenschaften. 2014;101:679–85.
Article
CAS
PubMed
Google Scholar
Bartholomew GA, Rainy M. Regulation of body temperature in rock hyrax, Heterohyrax brucei. J Mammal. 1971;52:81–95.
Article
CAS
PubMed
Google Scholar
Riek A, Geiser F. Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev. 2013;88:564–72.
Article
PubMed
Google Scholar
Whitfield MC, Smit B, McKechnie AE, Wolf BO. Avian thermoregulation in the heat: scaling of heat tolerance and evaporative cooling capacity in three southern African arid-zone passerines. J Exp Biol. 2015;218:1705–14.
Article
PubMed
Google Scholar
McKechnie AE, Smit B, Whitfield MC, Noakes MJ, Talbot WA, Garcia M, Gerson AR, Wolf BO. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell's sandgrouse (Pterocles burchelli). J Exp Biol. 2016;219:2137–44.
Article
PubMed
Google Scholar
Zub K, Fletcher QE, Szafrańska PA, Konarzewski M. Male weasels decrease activity and energy expenditure in response to high ambient temperatures. PLoS One. 2013;8:e72646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Withers PC, Cooper CE, Larcombe AN. Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool. 2006;79:437–53.
Article
CAS
PubMed
Google Scholar
Nicoll ME, Thompson SD. Basal metabolic rates and energetics of reproduction in therian mammals: marsupials and placentals compared. In: Loudon ASI, Racey PA, editors. Reproductive Energetics in Mammals, vol. 57. Oxford: Clarendon; 1987. p. 7–27.
Google Scholar
Stephenson PJ, Racey PA. Seasonal variation in resting metabolic rate and body temperature of streaked tenrecs, Hemicentetes nigriceps and H. semispinosus (Insectivora: Tenrecidae). J Zool. 1994;232:285–94.
Article
Google Scholar
Brice P. Heat tolerance and cold indifference in the short-beaked echidna, Tachyglossus aculeatus: Body temperature management in a mammalian constitutional eurytherm. St Lucia: University of Queensland, School of Biological Sciences; 2008.
Google Scholar
Brice PH, Grigg GC, Beard LA, Donovan JA. Patterns of activity and inactivity in echidnas (Tachyglossus aculeatus) free-ranging in a hot dry climate: correlates with ambient temperature, time of day and season. Aust J Zool. 2002;50:461–75.
Article
Google Scholar
Kuchel L. The energetics and patterns of torpor in free-ranging Tachyglossus aculeatus from a warm-temperate climate. St Lucia: PhD. University of Queensland, School of Integrative Biology; 2003.
Google Scholar
Wooden KM, Walsberg GE. Body temperature and locomotor capacity in a heterothermic rodent. J Exp Biol. 2004;207:41–6.
Article
PubMed
Google Scholar
Rojas AD, Körtner G, Geiser F. Cool running: locomotor performance at low body temperature in mammals. Biol Lett. 2012;8:868–70.
Article
PubMed
PubMed Central
Google Scholar
Noakes MJ, Smit B, Wolf BO, McKechnie AE. Thermoregulation in African Green Pigeons (Treron calvus) and a re-analysis of insular effects on basal metabolic rate and heterothermy in columbid birds. J Comp Physiol B. 2013;183:969–82.
Article
CAS
PubMed
Google Scholar
Boyles JG, Smit B, McKechnie AE. Does use of the torpor cut-off method to analyze variation in body temperature cause more problems than it solves? J Therm Biol. 2011;36:373–5.
Article
Google Scholar
Kobbe S, Nowack J, Dausmann K. Torpor is not the only option: seasonal variations of the thermoneutral zone in a small primate. J Comp Physiol B. 2014;184:789–97.
Article
PubMed
Google Scholar
Holloway J, Geiser F. Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps. J Comp Physiol B. 2001;171:643–50.
Article
CAS
PubMed
Google Scholar
Levesque DL, Tattersall GJ. Seasonal torpor and normothermic energy metabolism in the Eastern chipmunk (Tamias striatus). J Comp Physiol B. 2010;180:279–92.
Article
PubMed
Google Scholar
Lovegrove BG. Seasonal thermoregulatory responses in mammals. J Comp Physiol B. 2005;175:231–47.
Article
PubMed
Google Scholar
Mzilikazi N, Lovegrove BG. Reproductive activity influences thermoregulation and torpor in the pouched mouse, Saccostomus campestris. J Comp Physiol B. 2002;172:7–16.
Article
PubMed
Google Scholar
Dausmann KH, Glos J, Heldmaier G. Energetics of tropical hibernation. J Comp Physiol B. 2009;179:345–57.
Article
CAS
PubMed
Google Scholar
Kobbe S, Ganzhorn JU, Dausmann KH. Extreme individual flexibility of heterothermy in free-ranging Malagasy mouse lemurs (Microcebus griseorufus). J Comp Physiol B. 2011;181:165–73.
Article
PubMed
Google Scholar
Dausmann KH, Wein J, Turner JM, Glos J. Absence of heterothermy in the European red squirrel (Sciurus vulgaris). Mamm Biol. 2013;78:332–5.
Google Scholar
Arnold W, Ruf T, Kuntz R. Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure. J Exp Biol. 2006;209:4566–73.
Article
PubMed
Google Scholar
Glanville EJ, Seebacher F. Advantage to lower body temperatures for a small mammal (Rattus fuscipes) experiencing chronic cold. J Mammal. 2010;91:1197–204.
Article
Google Scholar
Humphries MM, Thomas DW, Kramer DL. The role of energy availability in mammalian hibernation: a cost-benefit approach. Physiol Biochem Zool. 2003;76:165–79.
Article
PubMed
Google Scholar
Prendergast BJ, Freeman DA, Zucker I, Nelson RJ. Periodic arousal from hibernation is necessary for initiation of immune responses in ground squirrels. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1054–62.
Article
CAS
PubMed
Google Scholar
Luis AD, Hudson PJ. Hibernation patterns in mammals: a role for bacterial growth? Funct Ecol. 2006;20:471–7.
Article
Google Scholar
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev. 2003;83:1153–81.
Article
CAS
PubMed
Google Scholar
Arendt T, Stieler J, Strijkstra AM, Hut RA, Rüdiger J, Van der Zee EA, Harkany T, Holzer M, Härtig W. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci. 2003;23:6972–81.
CAS
PubMed
Google Scholar
McAllan BM, Geiser F. Torpor during reproduction in mammals and birds: dealing with an energetic conundrum. Integr Comp Biol. 2014;54:516–32.
Article
CAS
PubMed
Google Scholar
Fietz J, Schlund W, Dausmann KH, Regelmann M, Heldmaier G. Energetic constraints on sexual activity in the male edible dormouse (Glis glis). Oecologia. 2004;138:202–9.
Article
PubMed
Google Scholar
Barnes BM, Kretzmann M, Licht P, Zucker I. The influence of hibernation on testis growth and spermatogenesis in the Golden-mantled ground-squirrel, Spermophilus lateralis. Biol Reprod. 1986;35:1289–97.
Article
CAS
PubMed
Google Scholar
Nowack J, Delesalle M, Stawski C, Geiser F. Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor. Sci Nat. 2016;103:1–7.
Article
CAS
Google Scholar
Carey HV, Frank CL, Seifert JP. Hibernation induces oxidative stress and activation of NF-kappa B in ground squirrel intestine. J Comp Physiol B. 2000;170:551–9.
Article
CAS
PubMed
Google Scholar
Orr AL, Lohse LA, Drew KL, Hermes-Lima M. Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp Biochem Physiol A. 2009;153:213–21.
Article
CAS
Google Scholar
Dausmann KH, Nowack J, Kobbe S, Mzilikazi N. Afrotropical heterothermy: a continuum of possibilities. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Heidelberg: Springer Berlin; 2012. p. 13–27.
Chapter
Google Scholar
Lovegrove BG. A single origin of heterothermy in mammals. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Berlin: Springer; 2012. p. 3–11.
Chapter
Google Scholar
Naya DE, Spangenberg L, Naya H, Bozinovic F. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation. Proc R Soc B. 2013;280:20131629.
Article
PubMed
PubMed Central
Google Scholar
Hochachka PW, Somero GN. Biochemical adaptation: mechanism and process in physiological evolution. New York: Oxford University Press; 2002.
Google Scholar
Willis CKR, Brigham RM. Defining torpor in free-ranging bats: experimental evaluation of external temperature-sensitive radiotransmitters and the concept of active temperature. J Comp Physiol B. 2003;173:379–89.
Article
CAS
PubMed
Google Scholar
Mzilikazi N, Lovegrove BG, Ribble DO. Exogenous passive heating during torpor arousal in free-ranging rock elephant shrews, Elephantulus myurus. Oecologia. 2002;133:307–14.
Article
Google Scholar
Warnecke L, Geiser F. Basking behaviour and torpor use in free-ranging Planigale gilesi. Aust J Zool. 2009;57:373–5.
Article
Google Scholar
Warnecke L, Geiser F. The energetics of basking behaviour and torpor in a small marsupial exposed to simulated natural conditions. J Comp Physiol B. 2010;180:437–45.
Article
PubMed
Google Scholar
Geiser F, Gasch K, Bieber C, Stalder GL, Gerritsmann H, Ruf T. Basking hamsters reduce resting metabolism, body temperature and energy costs during rewarming from torpor. J Exp Biol. 2016;219:2166–72.
Article
PubMed
Google Scholar
Thompson ML, Mzilikazi N, Bennett NC, McKechnie AE. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production? PLoS One. 2015;10:e0120442.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lovegrove BG, Kortner G, Geiser F. The energetic cost of arousal from torpor in the marsupial Sminthopsis macroura: benefits of summer ambient temperature cycles. J Comp Physiol B. 1999;169:11–8.
Article
CAS
PubMed
Google Scholar
Turbill C, Kortner G, Geiser F. Timing of the daily temperature cycle affects the critical arousal temperature and energy expenditure of lesser long-eared bats. J Exp Biol. 2008;211:3871–8.
Article
PubMed
Google Scholar
Geiser F, Goodship N, Pavey CR. Was basking important in the evolution of mammalian endothermy? Naturwissenschaften. 2002;89:412–4.
Article
CAS
PubMed
Google Scholar
Warnecke L, Turner JM, Geiser F. Torpor and basking in a small arid zone marsupial. Naturwissenschaften. 2008;95:73–8.
Article
CAS
PubMed
Google Scholar
Geiser F, Pavey CR. Basking and torpor in a rock-dwelling desert marsupial: survival strategies in a resource-poor environment. J Comp Physiol B. 2007;177:885–92.
Article
PubMed
Google Scholar
Currie S, Noy K, Geiser F. Passive rewarming from torpor in hibernating bats: minimizing metabolic costs and cardiac demands. Am J Physiol Regul Integr Comp Physiol. 2015;308:R34–41.
Article
CAS
PubMed
Google Scholar
Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G. Hibernation in the tropics: lessons from a primate. J Comp Physiol B. 2005;175:147–55.
Article
PubMed
Google Scholar
Vuarin P, Henry P-Y. Field evidence for a proximate role of food shortage in the regulation of hibernation and daily torpor: a review. J Comp Physiol B. 2014;184:683–97.
Article
PubMed
Google Scholar
Hallam SL, Mzilikazi N. Heterothermy in the southern African hedgehog, Atelerix frontalis. J Comp Physiol B. 2011;181:437–45.
Article
PubMed
Google Scholar
Vuarin P, Dammhahn M, Henry PY. Individual flexibility in energy saving: body size and condition constrain torpor use. Funct Ecol. 2013;27:793–9.
Article
Google Scholar
Stawski C, Geiser F. Fat and fed: frequent use of summer torpor in a subtropical bat. Naturwissenschaften. 2010;97:29–35.
Article
CAS
PubMed
Google Scholar
Dausmann KH. Flexible patterns in energy savings: heterothermy in primates. J Zool. 2014;292:101–11.
Article
Google Scholar
Geiser F. The role of torpor in the life of Australian arid zone mammals. Aust Mammal. 2004;26:125–34.
Google Scholar
Schmid J, Speakman JR. Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B. 2000;170:633–41.
Article
CAS
PubMed
Google Scholar
Withers PC, Cooper CE, Nespolo RF. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides). J Exp Biol. 2012;215:2806–13.
Article
PubMed
Google Scholar
Geiser F, Christian N, Cooper C, Körtner G, McAllan BM, Pavey C, Turner JM, Warnecke L, Willis CKR, Brigham RM. Torpor in marsupials: recent advances. In: Lovegrove BG, McKechnie AE, editors. Hypometabolism in Animals: Torpor, Hibernation and Cryobiology. Pietermaritzburg: Interpak Books; 2008. p. 297–306.
Google Scholar
Körtner G, Pavey CR, Geiser F. Thermal biology, torpor, and activity in free-living mulgaras in arid zone Australia during the winter reproductive season. Physiol Biochem Zool. 2008;81:442–51.
Article
PubMed
Google Scholar
Willis CKR, Brigham RM, Geiser F. Deep, prolonged torpor by pregnant, free-ranging bats. Naturwissenschaften. 2006;93:80–3.
Article
CAS
PubMed
Google Scholar
Stawski C, Willis C, Geiser F. The importance of temporal heterothermy in bats. J Zool (Lond). 2014;292:86–100.
Article
Google Scholar
van Breukelen F, Martin SL. The Hibernation Continuum: Physiological and Molecular Aspects of Metabolic Plasticity in Mammals. Physiology. 2015;30:273–81.
Article
PubMed
CAS
Google Scholar
Williams CT, Barnes BM, Kenagy GJ, Buck CL. Phenology of hibernation and reproduction in ground squirrels: integration of environmental cues with endogenous programming. J Zool. 2014;292:112–24.
Article
Google Scholar
Zervanos SM, Maher CR, Waldvogel JA, Florant GL. Latitudinal differences in the hibernation characteristics of woodchucks (Marmota monax). Physiol Biochem Zool. 2010;83:135–41.
Article
PubMed
Google Scholar
Lehmer EM, Savage LT, Antolin MF, Biggins DE. Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs. Physiol Biochem Zool. 2006;79:454–67.
Article
PubMed
Google Scholar
Young PJ. Hibernating patterns of free-ranging Columbian ground-squirrels. Oecologia. 1990;83:504–11.
Article
Google Scholar
Buck CL, Barnes BM. Annual cycle of body composition and hibernation in free-living arctic ground squirrels. J Mammal. 1999;80:430–42.
Article
Google Scholar
Turbill C. Thermoregulatory behavior of tree-roosting chocolate wattled bats (Chalinolobus morio) during summer and winter. J Mammal. 2006;87:318–23.
Article
Google Scholar
Wojciechowski MS, Jefimow M, Tegowska E. Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis). Comp Biochem Physiol A. 2007;147:828–40.
Article
CAS
Google Scholar
Bieber C, Ruf T. Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften. 2009;96:165–71.
Article
CAS
PubMed
Google Scholar
Vivier L, Van Der Merwe M. The incidence of torpor in winter and summer in the Angolan free-tailed bat, Mops condylurus (Microchiroptera: Molossidae), in a subtropical environment, Mpumulanga, South Africa. Afr Zool. 2007;42:50–8.
Article
Google Scholar
Turner J, Warnecke L, Körtner G, Geiser F. Opportunistic hibernation by a free‐ranging marsupial. J Zool. 2011;286:277–84.
Article
Google Scholar
Doucette LI, Brigham RM, Pavey CR, Geiser F. Prey availability affects daily torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). Oecologia. 2012;169:361–72.
Article
PubMed
Google Scholar
Nowack J, Dausmann KH. Can heterothermy facilitate the colonization of new habitats? Mammal Rev. 2015;45:117–27.
Article
Google Scholar
Turbill C, Prior S. Thermal climate-linked variation in annual survival rate of hibernating rodents: shorter winter dormancy and lower survival in warmer climates. Funct Ecol. 2016;30:1366–72.
Article
Google Scholar
Pretzlaff I, Dausmann KH. Impact of climatic variation on the hibernation physiology of Muscardinus avellanarius. In: Ruf T, Bieber C, Arnold W, Millesi E, editors. Living in a Seasonal World: Thermoregulatory and Metabolic Adaptations. Heidelberg: Springer Berlin; 2012. p. 85–97.
Chapter
Google Scholar
Geiser F, Kenagy G. Torpor duration in relation to temperature and metabolism in hibernating ground squirrels. Physiol Zool. 1988;61:442–9.
Article
Google Scholar
Reeder DM, Frank CL, Turner GG, Meteyer CU, Kurta A, Britzke ER, Vodzak ME, Darling SR, Stihler CW, Hicks AC. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS One. 2012;7:e38920.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovegrove BG. The power of fitness in mammals: perceptions from the African slipstream. Physiol Biochem Zool. 2006;79:224–36.
Article
PubMed
Google Scholar
Geiser F, Holloway JC, Körtner G, Maddocks TA, Turbill C, Brigham RM. Do patterns of torpor differ between free-ranging and captive mammals and birds. In: Heldmaier G, Klingenspor M, editors. Life In The Cold: 11th International Hibernation Symposium. Berlin: Springer; 2000. p. 95–102.
Chapter
Google Scholar
Zervanos SM, Maher CR, Florant GL. Effect of body mass on hibernation atrategies of woodchucks (Marmota monax). Integr Comp Biol. 2013;54:443–51.
Article
PubMed
Google Scholar
Levy O, Dayan T, Kronfeld-Schor N. Interspecific competition and torpor in golden spiny mice: two sides of the energy-acquisition coin. Integr Comp Biol. 2011;51:441–8.
Article
PubMed
Google Scholar
Nowack J, Cooper CE, Geiser F. Cool echidnas survive the fire. Proc R Soc Lond B Biol Sci. 2016. doi:10.1098/rspb.2016.0382..
Google Scholar
Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O'Connor MI. Increased temperature variation poses a greater risk to species than climate warming. Proc R Soc B. 2014;281:20132612.
Article
PubMed
PubMed Central
Google Scholar
Jones KE, Bielby J, Cardillo M, Fritz SA, O'Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology. 2009;90:2648.
Article
Google Scholar